

# Analyse et traitement des microorganismes du milieu hydrique

Pr. D. Haras



# Nous buvons 90% de nos maladies (Louis PASTEUR)

## L'eau douce ne représente que 3% de l'eau totale terrestre

99,1 % de l'eau douce totale de la terre ne sont pas directement utilisables

**0,9** % se retrouve dans les lacs, rivières, les fleuves (27% des eaux de surface) et les nappes souterraines dont 0,3% est utilisable par l'homme

#### 0,0001% de l'eau terrestre est disponible et potable

9 pays se partagent 60 % des réserves mondiales d'eau

80 pays souffrent de pénuries ponctuelles

28 pays souffrent de pénuries régulières

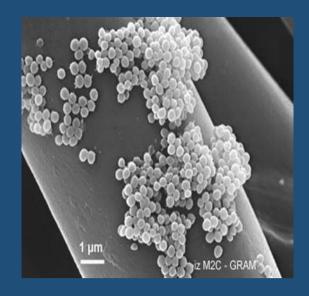
1,5 milliards d'habitants n'ont pas accès à l'eau potable

2 milliards d'habitants sont privés d'installations sanitaires

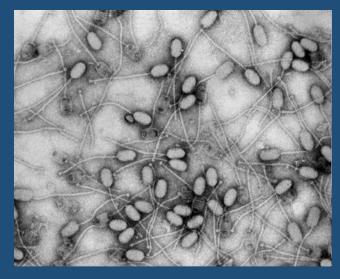
1,6 million d'enfants meurent chaque année de diarrhée, due principalement à la mauvaise qualité de l'eau et au manque d'assainissement

- 1676 : A. van Leeuwenhaek découvre des microorganismes dans l'eau
- 1855 : Snow relie une épidémie de choléra à la consommation d'eau
- 1861 : L. Pasteur associe la génération spontanée à la croissance de microorganismes dans l'eau
- 1876 : R. Kock rapporte que les microorganismes peuvent être responsables de maladies
- 1884 : R. Kock associe le choléra à des microorganismes d'origine fécale
- 1886 : l'agent responsable de la fièvre typhoïde est détecté dans de l'eau contaminée
- 1894 : Frankland & Franckland mettent en évidence dans l'eau d'autres pathogènes d'origine non humaine responsables de maladies

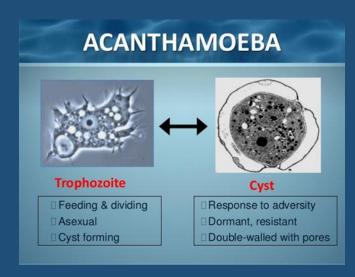
- 1881-83: R. Kock développe la culture bactérienne sur milieu solide et introduit la technique de dénombrement des bactéries hétérotrophes cultivables (HPC). Première norme de potabilité à 100 CFU/ml
- 1890 (de Vries), 1984 (Olson et Nagy) : utilisent l'analyse au microscope des systèmes de distribution d'eau potable
- 1885 : Escherich détecte Bacillus coli-communis (Escherichia coli) comme le microorganisme prédominant dans les fèces humains; initiant le concept d'indicateur fécal basé par Eijkman (1904) sur E. coli et les coliformes thermotolérants
- 1891 : Sanarelli isole Bacillus hydrophilus fucus (Aeromonas hydrophila, Schubert, 1967) à partir de grenouilles accidentellement infectées
- 1930-40: Baylis met en évidence la multiplication des coliformes dans les systèmes de distribution et initie le débat de l'informativité du dénombrement des coliformes comme indicateur de contamination fécale
- 1980-90 : Herson et Le Chevallier montrent que l'attachement des microorganismes aux surfaces les protège de la désinfection

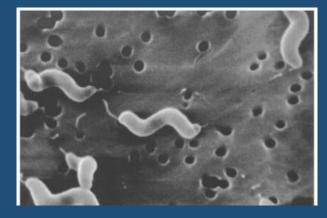

- 1881-83: R. Kock développe la culture bactérienne sur milieu solide et introduit la technique de dénombrement des bactéries hétérotrophes cultivables (HPC). Première norme de potabilité a 100 CFU/ml
- 1890 (de Vries), 1984 (Olson et Nagy) : utilisent l'analyse au microscope des systèmes de distribution d'eau potable
- 1885 : Escherich détecte Bacillus coli-communis (Escherichia coli) comme le microorganisme prédominant dans les fèces humains; initiant le concept d'indicateur fécal basé par Eijkman (1904) sur E. coli et les coliformes thermotolérants
- 1891 : Sanarelli isole Bacillus hydrophilus fucus (Aeromonas hydrophila, Schubert, 1967) à partir de grenouilles accidentellement infectées
- 1930-40: Baylis met en évidence la multiplication des coliformes dans les systèmes de distribution et initie le débat de l'informativité du dénombrement des coliformes comme indicateur de contamination fécale
- 1980-90 : Herson et Le Chevallier montrent que l'attachement des microorganismes aux surfaces les protège de la désinfection

#### Au XX<sup>ième</sup> siècle

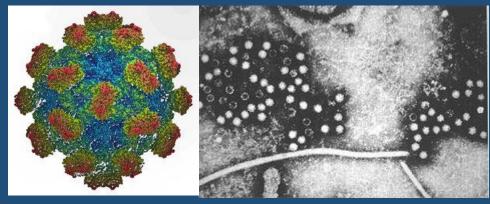

- Des bactéries utilisant le fer, des invertébrés et des organismes impliqués dans le gout et l'odeur ont été identifiés
- Augmentation de la contamination par des composés organiques d'origine anthropique impose l'amélioration des procédés de production tels que ozonisation et filtration sur charbon actif (Sontheimer, 1978)
- La découverte de co produits halogénés (tel le trihalométhane; THM) après chloration implique des changements de traitements pour limiter certains types de cancers. Les Pays Bas ont interdit la post chloration en 1986 (Schellart)
- De nouveaux microorganismes potentiellement pathogènes ont été identifiés dans les réseaux de distribution et associés aux notions de « re-croissance » et de « biofilms » malgré des analyses quantitatives acceptables des coliformes après chloration :
- Mycobactérium kansasii (1974)
- Pseudomonas aeruginosa (1977)
- Legionella pneumophila (1980)
- *Aeromonas* sp. (1980-84)
- Mycobacterium avium (1986)
- Giardia lamblia, Cryptosporidium pavum (protozoaires)
- Virus
- Amibes...




Escherichia. coli




**Staphylococcus** (en biofilm)




Staphylococcus. aureus





Campylobacter jejuni



Virus de l'hépatite E

## Les maladies hydriques

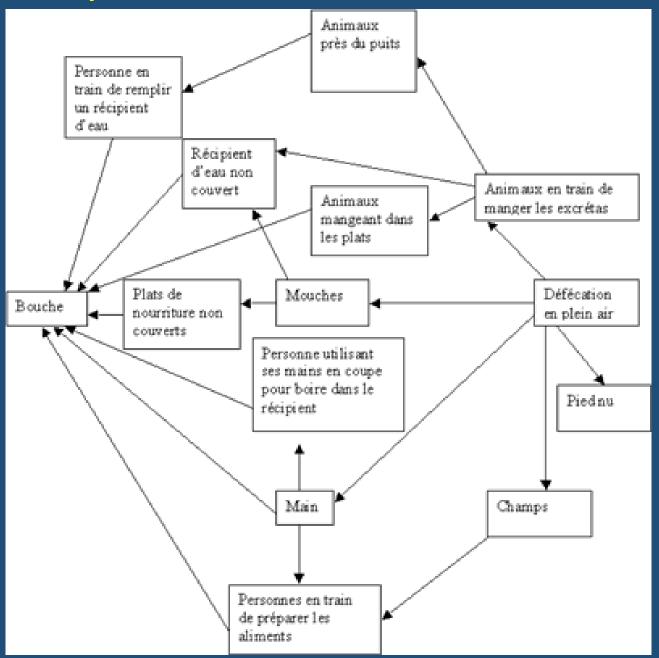
- Dues à des contaminations par des déchets humains, animaux ou chimiques
- 6000 morts/jour par maladies diarrhéiques
- En 2001: 2 millions de morts, > 50% d'enfants
- En 10 ans plus d'enfants tués que tous les conflits armés depuis la fin de la 2<sup>nd</sup> guerre mondiale
- Cause: Pauvreté

## Les maladies aquatiques

- Dues à des organismes passant une partie de leur vie dans l'eau et une autre partie en tant que parasites
- Une grande variété de vers en sont responsables
- La plus connue est la schistosomiase (bilharziose) et 200 millions de personnes sont infectées dont 20 millions souffrent de séquelles sévères
- 74 pays sont atteints
- On distingue la fièvre jaune, la dengue, la filariose et le paludisme (malaria) responsable à lui seul de 1 millions de décès

#### La mortalité due aux maladies hydriques est très élevée.

#### Dans le monde,


- environ 6 millions d'enfants meurent tous les ans de gastro-entérites hydriques ;
- 100 millions en souffrent en permanence;
- 30 millions souffrent d'onchocercose;
- 700 millions sont atteints du paludisme, dont 2 à 3 millions meurent chaque année.

La pauvreté est responsable : manque d'eau, assainissement inexistant ou insuffisant, mauvaise hygiène, pas de fabrication d'eau potable, peu d'accès aux soins et structures médicales inexistantes.

#### Aujourd'hui, l'anthropisation influence même la qualité de l'eau qui a été traitée

- La schistosomiase, qui est une maladie hydrique considérée comme la deuxième infection parasitaire après le paludisme
- les amibes, qui provoquent de fortes diarrhées entraînant une déshydratation qui peut s'avérer mortelle
- la fièvre typhoïde, qui provoque des troubles digestifs et de fortes fièvres
- la bilharziose, responsable de troubles du foie, des intestins et de la vessie, dues à un petit ver qui se développe dans les eaux stagnantes
- l'onchocerchose (par Onchocerca volvulus), qui engendre la cécité
- les eaux stagnantes sont également les habitats des moustiques qui propagent la dengue ou le paludisme
- le trachome, qui est une maladie infectieuse des yeux qui peut provoquer une cécité après des infections répétées
- l'hépatite A et E entraînent une infection et une inflammation du foie
- le choléra ...

## Quelques maladies liées à l'eau



Absorber de la nourriture souillées ou de l'eau non potable. Manger avec les mains sales.

- Le choléra.
- La poliomyélite :
- La dysenteries : Les diarrhées infantiles
- L'ascaridiose

Marcher pieds nus près des endroits souillées par les excréments, entrer et rester longtemps dans l'eau stagnante. Lorsqu'une plaie entre en contact avec les microbes contenus dans les excréments.

- Les parasitoses intestinales (anguillulose, ankylostomiase)
- La bilharziose
- Le tétanos
- Des maladies dermatologiques : gales, poux...
  Des maladies ophtalmologiques : conjonctivite

#### Le péril fécal

C'est l'ensemble des maladies infectieuses dues à des agents pathogènes, bactéries, virus, parasites déposés dans le milieu extérieur par les excréments

Les excréments d'une personne infectée par l'un de ces pathogènes peuvent contaminer une personne saine par:

- •l'intermédiaire des mains portées à la bouche,
- •la consommation d'eau non potable
- ·la consommation d'aliments souillés,
- •en marchant pieds nus près des endroits où se trouvent les excréments,
- •en se baignant ou se lavant dans une eau souillée.
- •Les agents pathogènes (virus, bactéries, parasites) sont transportés sur la nourriture par les mouches, les mains sales, et sont entraînés dans les milieux et les puits par l'eau de pluie...

# Indicateurs microbiens les plus courants, utilisés pour évaluer la qualité des eaux de consommation

La numération des bactéries hétérotrophes (NBH) qui donne une indication sur la charge totale d'un échantillon d'eau en bactéries aérobies et anaérobies facultatives. Cet indicateur est aussi appelé « numération standard sur plaque » (NSP), « numération des bactéries aérobies sur plaque » ou « numération totale sur plaque » (NTP). Cette valeur correspond à l'ensemble des bactéries se nourrissant de substances organiques. Un pic de NBH en sortie de station : changement de la source, modification du traitement ou recolonisation.

La numération des coliformes totaux (CT) représente un grand groupe de bactéries qui se trouvent essentiellement dans l'environnement. Si en sortie de station de traitement de défaillance ou recolonisation. Pas spécifique d'une contamination fécale.

La numération des coliformes thermotolérants (CTT) représente un sous groupe des CT qui fermentent le lactose avec une production d'acide et de gaz à 44-45°C. Traitement, désinfection inadéquate, recolonisation ou infiltration dans le réseaux de distribution. Elle a remplacé l'indicateur coliformes totaux.

La numération des *Escherichia coli*, Contamination récente. Fait partie des CTT dont elle est le seul membre à ne se trouver que dans l'intestin des animaux à sang chaud (*E.coli* 0157:H7)

L'hypothèse retenue est que la principale cause de contamination de l'eau est d'origine fécale

| Analyse         | Détermine les concentrations des                                                                                                                    | Coûteuse                                                                                                                                 |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| microbienne     | différents organismes excrétés dans<br>les eaux usées ou sur les produits                                                                           | La collecte des échantillons peut prendre<br>beaucoup de temps                                                                           |  |
|                 | Fournit des données sur les taux de<br>dépérissement des agents pathogènes                                                                          | Nécessite du personnel formé et des<br>installations de laboratoire                                                                      |  |
|                 | Fournit des informations utilisées<br>dans les QMRA pour évaluer les<br>risques                                                                     | L'obtention des résultats de laboratoire<br>prend du temps                                                                               |  |
|                 | Peut contribuer à l'identification des<br>sources d'agents pathogènes                                                                               | Pour certains agents pathogènes, les<br>procédures normalisées de détection ou<br>d'isolement à partir des produits                      |  |
|                 | Utilisée pour mettre en relation                                                                                                                    | alimentaires font défaut                                                                                                                 |  |
|                 | agents pathogènes et infection ou<br>maladie (par exemple par analyse<br>d'échantillons de selles ou dépistage<br>des individus séropositifs)       | Les taux d'isolement peuvent être très<br>variables                                                                                      |  |
|                 |                                                                                                                                                     | Certaines méthodes ne déterminent pas la<br>viabilité des organismes                                                                     |  |
| Étude           | Mesure la morbidité actuelle dans                                                                                                                   | Coûteuse                                                                                                                                 |  |
| épidémiologique | une population exposée                                                                                                                              | Des biais peuvent affecter les résultats                                                                                                 |  |
|                 | Utilisable pour tester différentes<br>hypothèses concernant les<br>expositions                                                                      | La taille des échantillons nécessaire pour<br>mesurer des événements sanitaires<br>statistiquement significatifs peut être<br>importante |  |
|                 |                                                                                                                                                     | Nécessité de trouver le juste milieu entre<br>la puissance de l'étude et sa sensibilité                                                  |  |
| QMRA            | Peut estimer de très faibles niveaux<br>de risque infectieux ou morbide                                                                             | Les scénarios d'exposition peuvent varier<br>de manière importante et sont difficiles à                                                  |  |
|                 | Méthode peu onéreuse de prédiction<br>des risques d'infection ou de<br>maladie<br>Facilite les comparaisons entre<br>différentes voies d'exposition | modéliser                                                                                                                                |  |
|                 |                                                                                                                                                     | On ne dispose pas de données d'entrée<br>validées pour chaque scénario                                                                   |  |
|                 |                                                                                                                                                     | d'exposition                                                                                                                             |  |
|                 |                                                                                                                                                     | Les risques prédits concernent<br>l'exposition à un type d'agent pathogène,<br>à un moment donné                                         |  |

Quantitative microbiological risk assessment (QMRA) is the process of estimating the risk

from exposure to microorganisms.

# Données pour l'évaluation d'un risque sanitaire

| Paramètres généraux    | Norme de l'OMS            | Normes de l'UE |  |
|------------------------|---------------------------|----------------|--|
| Matières en suspension | Pas de lignes directrices | Non mentionées |  |
| DCO                    | Pas de lignes directrices | Non mentionée  |  |
| DBO                    | Pas de lignes directrices | Non mentionée  |  |

| Anions (ions négatifs) | Norme de l'OMS | Normes de l'UE |  |
|------------------------|----------------|----------------|--|
| Chlore (CI)            | 250 mg/L       | 250 mg/L       |  |
| Cyanure (CN)           | 0,07 mg/L      | 0,05 mg/L      |  |
| Fluor (F)              | 1,5 mg/L       | 1,5 mg/L       |  |

Les normes qui définissent la qualité de l'eau destinée à la

| Paramètres microbiologiques | Norme de l'OMS | Normes de l'UE |
|-----------------------------|----------------|----------------|
| Escherichia coli            | Non mentionée  | 0 in 250 mL    |
| Enterococci                 | Non mentionée  | 0 in 250 mL    |
| Pseudomonas                 |                |                |
| aeruginosa                  | Non mentionée  | 0 in 250 mL    |
| Clostridium                 |                |                |
| perfringens                 | Non mentionée  | 0 in 100 mL    |
| bactérie coliforme          | Non mentionée  | 0 in 100 mL    |
| Nombre de colonnie à 22oC   | Non mentionée  | 100/mL         |
| Nombre de colonie à 37oC    | Non mentionée  | 20/mL          |

| outum (Na)             | 200 HgL                   | 200 HBT       |
|------------------------|---------------------------|---------------|
| Etain (Sn) inorganique | Pas de lignes directrices | Non mentionée |
| Uranium (U)            | 1,4 mg/L                  | Non mentionée |
| Zinc (Zn)              | 3 mg/L                    | Non mentionée |

(3) Désirée: 15 mg/L Pt-Co

(4) Désirée: Moins de 75% de la concentration de saturation

5) Désirée: 150-500 mg/L

6) Désirée: 0,3 mg/L

| Maladies                           | Agents pathogènes                             | Méthodes analytiques                                                     |  |
|------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|--|
| D'Origine bactérienne              |                                               |                                                                          |  |
| Typhoïde et partyphoïde            | Salmonella typhi                              |                                                                          |  |
| Dysenterie bacillaire              | Salmonella paratyphi A et B                   | Normalisées                                                              |  |
| Choléra                            | Shigella sp                                   |                                                                          |  |
| Gastro-entérites aïgue et diarrhée | Vibrio cholerae                               | filtration sur membrane                                                  |  |
|                                    | Escherichia coli Entérotoxique, Campylobacter | dénombrement sur milieu nutritif solide,                                 |  |
|                                    | Yersinia enterolitica                         | Enrichissement sur milieu non sélectif,                                  |  |
|                                    | Salmonelle paratyphique A et B                | Culture sur lieu sélectif : métabolisme bactérien, dénombrement du genre |  |
|                                    | Aeromonas Hydrphila, veronii biotype sobria,  | 24 à 48H au minimum                                                      |  |
|                                    | caviae                                        | Identification biochimique (galeries API, Biolog)                        |  |
|                                    | Shigella sp                                   |                                                                          |  |
| Gastrite                           | Helicobacter pylori                           | Normalisées, en cours de normalisation, spécifiques de centres aggréés   |  |
| Infections pulmonaires             | Complexe mycobacterium                        | Sérotypage: Immunofluorescence spécifique des marqueurs                  |  |
|                                    | (M. avium, sylvaticum, paratuberculosis,      | membranaires des sous espèces et sérovarts,                              |  |
|                                    | xenopi, intracellulare)                       | hybridation fluorescente in situ [FISH]                                  |  |
|                                    |                                               | Plusieurs jours                                                          |  |
|                                    |                                               | Identification spécifique et quantification: PCR,                        |  |
| Fièvre de Pontiac                  | Legionella sp                                 | PCR quantitative                                                         |  |
| Legionellose                       |                                               | <24H                                                                     |  |
| Bactériémie, choc septique         | Pseudomonades: P. aeruginosa, putida,         |                                                                          |  |
|                                    | fluorescence, stutzeti                        | [contamination aéroportées, biofilms]                                    |  |
|                                    | Staphylococcus sp ((S. aureus)                |                                                                          |  |
| Anthrax                            | Bacillus anthracis (spores)                   |                                                                          |  |

| Maladies                            | Agents pathogènes          | Méthodes analytiques                                                    |  |  |  |
|-------------------------------------|----------------------------|-------------------------------------------------------------------------|--|--|--|
|                                     | D'Origine virale           |                                                                         |  |  |  |
| Hépatite A et E                     | Virus de l'hépatite A et E | Les entérovirus sont les plus recherchés                                |  |  |  |
| Poliomiélite                        | Virus de la poliomiélite   | Concentration (adsorption-élution, flucolation organique)               |  |  |  |
| Gastro-entérites aïgue et chronique | Virus Norwalk              | Culture sur des cellules BGM du rein, néoplasiques humaines HeLa        |  |  |  |
|                                     | Rotavirus                  | Présence confirmée par des effets cytopathogènes visibles au microscope |  |  |  |
|                                     | Enterovirus                | Résultats en 2 à 3 semaines                                             |  |  |  |
| Diarrhée                            | Norovirus                  |                                                                         |  |  |  |
|                                     | Adenovirus                 |                                                                         |  |  |  |

#### Les virus d'origine hydrique sont principalement:

- **Les norovirus**, semblables à Norwalk, résistent à la chloration, au gel et à 60°C. Outre l'eau, les aérosols, des aliments (mollusques, salades...), objets contaminés et le contact entre personnes assurent leur transmission.
- Les virus de l'hépatite VHA et VHE sont transmissibles par voie fécale-orale et associés à la transmission hydrique
- Les rotavirus du groupe A sont endémiques dans le monde entier et sont les plus répandus
- Les entérovirus (poliovirus, virus Coxsakie A, les échovirus ...) sont résistants aux agresseurs environnementaux et stables en milieu acides (jusqu'è pH 3). Infection par voie orale principalement. Survivent au transit intestinal et peuvent y demeurer.
- Les adénovirus sont stables dans l'environnement. Ils causent des infections respiratoires et gastro-intestinales. L'eau potable n'est pas une voie de transmission.
- Les astrovirus causent des infections bénignes ressemblant à la grippe. Les complications comprennent l'anémie et l'arthralgie

| Maladies                          | Agents pathogènes      | Méthodes analytiques                                  |  |  |
|-----------------------------------|------------------------|-------------------------------------------------------|--|--|
|                                   | D'Origine parasitaire  |                                                       |  |  |
| Parasite gastre-entérite          | Giardia histolytica    | Recherche des formes enkystées par immunofluorescence |  |  |
|                                   | Gardia lamblia         | (les formes pathogènes sont végétatives)              |  |  |
|                                   | Cryptosporidium parvum |                                                       |  |  |
| Amibiose                          | Entamoeba histolytica  |                                                       |  |  |
| (diarrhée légère à la dysenterie) |                        |                                                       |  |  |

Les amibes, dont les *Acanthamoeba*, sont présents dans tous les environnements aquatiques même l'eau chlorée. Elles hébergent des pathogènes opportunistes (*Legionellea pneumophila, Mycobacterium avium...*). Leurs kystes survivent au traitement de l'eau et pénètrent dans l'eau potable

**Les helminthes** sont des vers parasites intestinaux et/ou tissulaires. La transmission se fait par:

Ingestion d'un hôte intermédiaire

Passage au travers de la peau ou des muqueuse (eaux de lavage, baignades, plaies...)

Transmission par des œufs ou des kystes infectants

Généralement ils sont éliminés lors des étapes de filtration de l'eau

#### Essentiellement impliqués dans le risque hydrique :

Les nématodes (vers ronds); Ascaris, oxyures, filaires, ankylostomes anguillules

Les cestodes (vers plats d'aspect rubané); Ténia, Bothriocéphale

Pours les trématodes (vers plats non annelées); Bilharziose, Douve du foie

#### Qu'avons-nous comme outils pour détecter les pathogènes? Elément étudié Types de méthode Echantillon environnemental ou clinique Isolement bactérien Méthodes Résolution au niveau des espèces Résolution au niveau des souches Analyse des proteines Protéome totales Biochimiques Métabolome Analyse des acides gras Sérotypage. Antigenes de Immunologique surface Sérogroupage Ribotypage Culture Méthodes d'hybridation ADN-ADN MRA-PFGE **Populations** RFLP; AFLP; IRS PC Polymorphisme de taille de ADN Moléculaire légionelles RAPD: AP-PCR fragments d'ADN ITS; MLVA ADNr 168 Séquençage de gène mip; rpoB; dotA SBT Sans culture ADNr 16S Moléculaire ADN SSCP

#### Résolution taxonomique de différentes méthodes de biologie moléculaire

### Technique

Polymorphisme de longueur de fragments de restriction (RFLP)

Analyse des fragments de restriction de faible fréquence (LFRFA, PFGE)

Ribotypage

Amplification de l'ADN (AFLP, AP-PCR, reo-PCR, DAF, RAPD, ARDRA)

Typage des phages et bactériocines

Techniques sérologiques (monoclonale, polyclonale)

Zymogramme (MEE)

Profil électrophorétique des protéines cellulaires totales

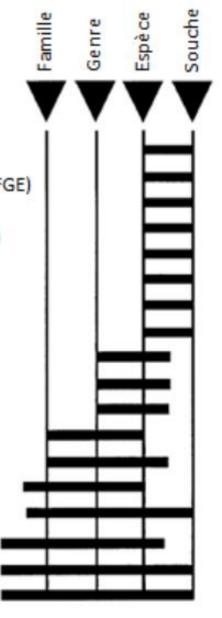
Hybridation ADN-ADN

% G+C

tDNA-PCR

Marqueurs chimiotaxonomiques (polyamines, quinones)

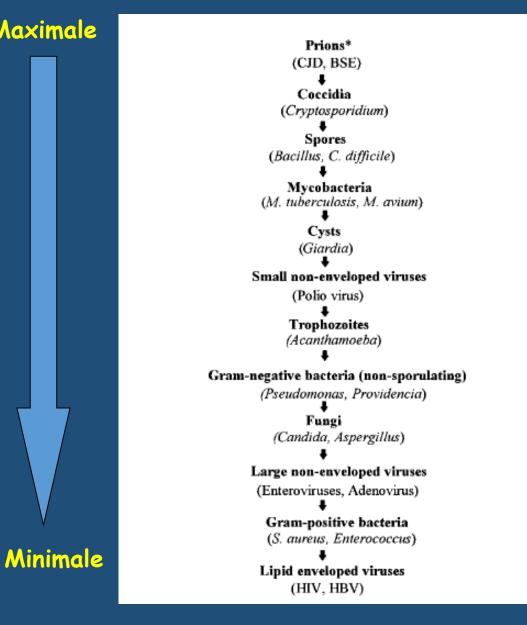
Empreinte des acides gras cellulaires (FAME)


Structure de la paroi cellulaire

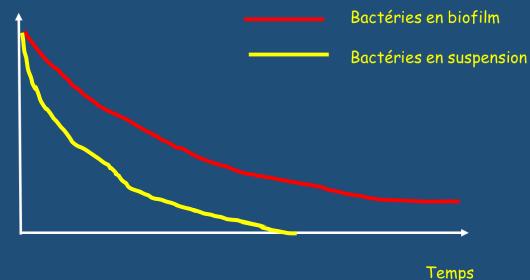
Analyse du phénotype (classique, galerie API...)

Séquençage des ARNr

Sondes à ADN


Séquençage de l'ADN




# Résistance aux antiseptiques et désinfectants

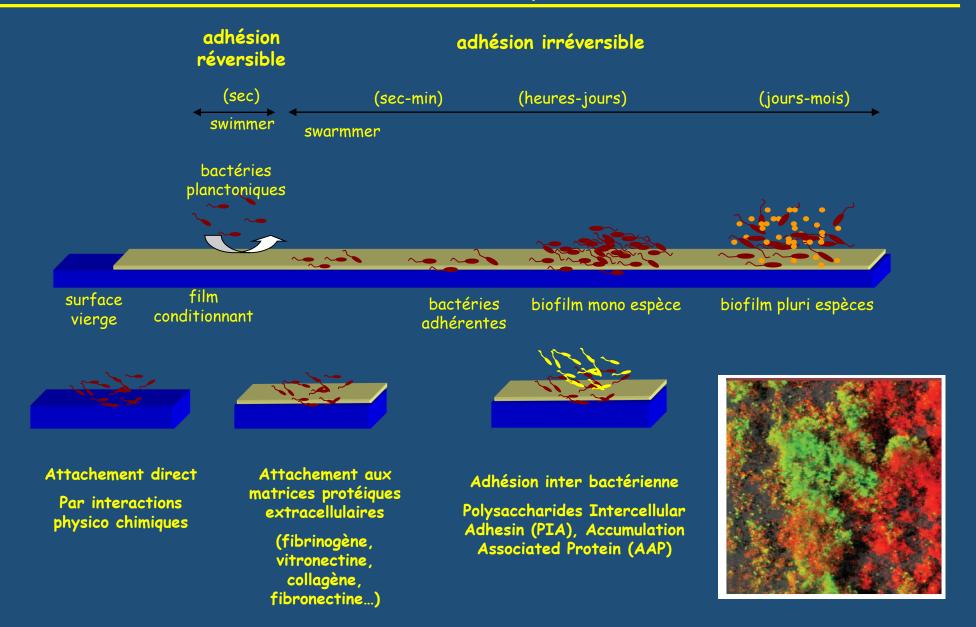
(d'après McDonnel 1999)

# Maximale

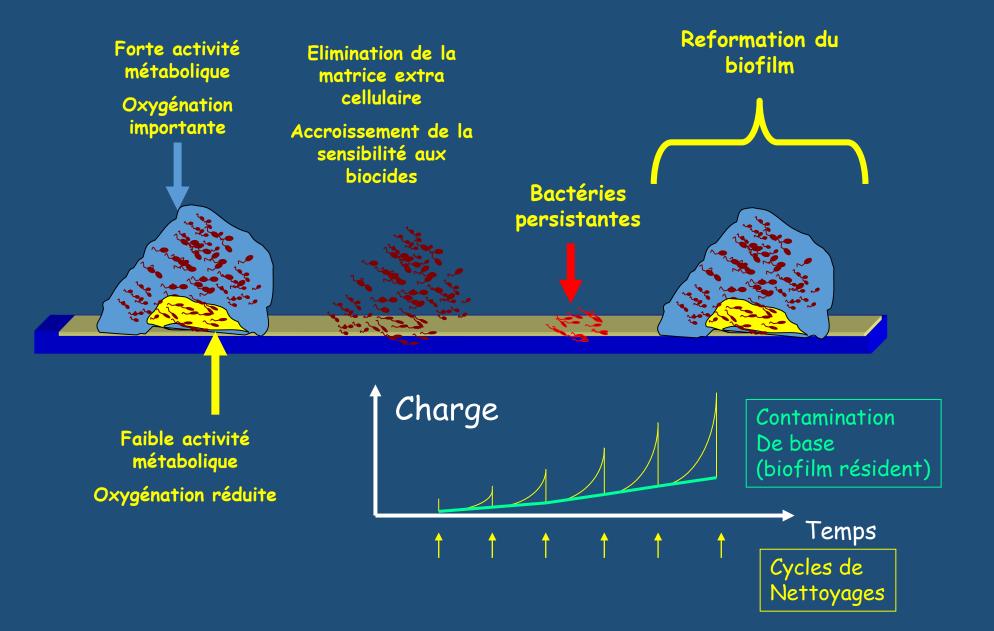




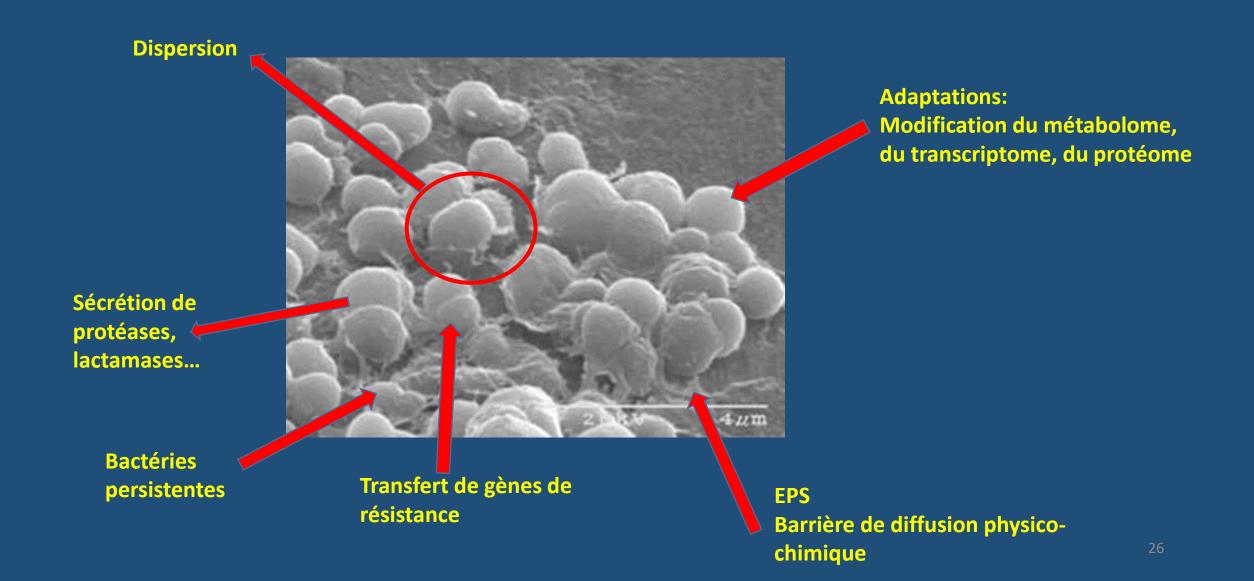



| Réduction ou inactivation des pathogènes par des procédés de traitement des eaux usées |        |                                                    |                                    |                   |
|----------------------------------------------------------------------------------------|--------|----------------------------------------------------|------------------------------------|-------------------|
| Procédés de traitement                                                                 |        | Elimination des agents pathogènes en Log décimales |                                    |                   |
|                                                                                        | Virus  | bactéries                                          | Kystes ou oocystes de protozoaires | Œufs d'helminthes |
| Procédés biologiques bas débits                                                        |        |                                                    |                                    |                   |
| bassin de stabilisation                                                                | 1-4    | 1-6                                                | 1-4                                | 1-3               |
| Réservoirs de stockage et de traitement des eaux usées                                 | 1-4    | 1-6                                                | 1-4                                | 1-3               |
| Marais artificiels                                                                     | 1-2    | 0,5-3                                              | 0,5-2                              | 1-3               |
| Procédés hauts débits                                                                  |        |                                                    |                                    |                   |
| Traitement primaire                                                                    |        |                                                    |                                    |                   |
| Sédimentation primaire                                                                 | 0-1    | 0-1                                                | 0-1                                | 0-<1              |
| Traitement amélioré chimiquement                                                       | 1-2    | 1-2                                                | 1-2                                | 1-3               |
| Réacteurs anaérobies à lit de boues à flux ascendant                                   | 0-1    | 0,5-1,5                                            | U-1                                | 0,5-1             |
| Traitement secondaire                                                                  |        |                                                    |                                    |                   |
| Boues activées + sédimentation secondaire                                              | 0-2    | 1-2                                                | 0-1                                | 1-<2              |
| Filtres à lit bactérien + sédimentation secondaire                                     | 0-2    | 1-2                                                | 0-1                                | 1-2               |
| Lagune aérée + bassin de décantation                                                   | 1-2    | 1-2                                                | 0-1                                | 1-3               |
| Traitement tertiare                                                                    |        | ,                                                  |                                    |                   |
| Coagulation/floculation                                                                | 1-3    | 0-1                                                | 1-3                                | 2                 |
| Filtration sur sable granulaire haut ou bas débit                                      | 1-3    | 0-3                                                | 0-3                                | 1-3               |
| Filtration sur lit double                                                              | 1-3    | 0-1                                                | 1-3                                | 2-3               |
| Membranes                                                                              | 2,5->6 | 3,5->6                                             | >6                                 | >3                |
| Désinfection                                                                           |        |                                                    |                                    |                   |
| Chloration (chlore libre)                                                              | 1-3    | 2-6                                                | 0-1,5                              | 0-<1              |
| Ozonation                                                                              | 3-6    | 2-6                                                | 1-2                                | 0-2               |
| Irradiation UV                                                                         | 1->3   | 2->4                                               | >3                                 | 0                 |

| Avantages et inconvénients des procédés de traitement des eaux usées |                                                                                |                                                                                   |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Traitement                                                           | Avantages                                                                      | Inconvénients                                                                     |  |
| Procédés biologiques bas débits                                      |                                                                                |                                                                                   |  |
| bassin de stabilisation                                              | Réduction de la concantration de tous les pathogènes                           | Courts-circuits hydroliques réduisant l'efficacité d'élimination des pathogènes   |  |
| Réservoirs de stockage                                               | Faible coûts de construction, exploitation et maintenance                      | Présence d'algues dans les effluents d'épandage pour irrigaion                    |  |
| et de traitement des eaux usées                                      | Simplicité de fonctionnement et maintenance                                    | Besoins de grandes surfaces                                                       |  |
|                                                                      | Boues à faibles concentration d'œufs d'helminthes                              | Favorise la reproduction des pathogène si pas d'entretien                         |  |
|                                                                      | Aucun besoin d'énergie électrique                                              | Forte évaporation sous les climats arides et augmentation de la salinité de l'eau |  |
|                                                                      | Fonctionne sous climats chauds, faible évaporation                             |                                                                                   |  |
| Marais artificiels                                                   | Efficace contre les pathogènes mais insuffisante pour les bactéries et virus   | Elimination des pathogènes d'efficacité variable                                  |  |
|                                                                      | Coûts et ecomplexité faibles                                                   | Aménagement et végétaux à mettre en place                                         |  |
|                                                                      | Fonctionnement et maintenance simples                                          | Forte évaporation sous les climats arides et augmentation de la salinité de l'eau |  |
|                                                                      | Pas besoin d'électricité                                                       | Risque de favoriser la reproduction de pathogènes                                 |  |
|                                                                      |                                                                                | Effluents pouvant être contaminés par les excreta de la faune                     |  |
| Procédés hauts débits                                                |                                                                                |                                                                                   |  |
| Sédimentation primaire                                               | Faible coût, technologie simple                                                | Faible élimination des pathogènes                                                 |  |
| Traitement primaire amélioré chimiquement                            | Améliore la sédimentation primaire à faible coût                               | Plus de boues                                                                     |  |
|                                                                      | Peu besoin de terrain                                                          | Traiter les boues pour inactiver les pathogènes                                   |  |
|                                                                      | Elimination très efficace des œufs d'helminthes                                | Utilisation de produits chimiques                                                 |  |
| Boues activées ou filtres à lit biologique,                          | Technologie bien comprise et disponible                                        | Coût élevé et grande complexité                                                   |  |
| + sédimentation secondaire                                           | Optimisation possible pour améliorer la désinfection                           | Personnel formé                                                                   |  |
| + désinfection                                                       |                                                                                | Besoins d'électricité                                                             |  |
|                                                                      |                                                                                | Production de beaucoup de boues à manipuler, traiter et éliminer                  |  |
|                                                                      |                                                                                | Inactivation des pathogènes par traitements                                       |  |
|                                                                      |                                                                                | Augmentation d'œufs d'helminthes dans les effluents                               |  |
| Réacteur anaérobie à lit de boues à flux ascendants                  | Faible coût                                                                    | Mauvaises odeurs des effluents                                                    |  |
|                                                                      | Efficacité moyenne pour éliminer les œufs d'helminthes                         | Personnel formé                                                                   |  |
|                                                                      |                                                                                | Traiter les boues pour inactiver les pathogènes                                   |  |
| Lagunes aérées + bassin de décantation                               | Technologie bien comprise et disponible                                        | Besoins d'électricité                                                             |  |
|                                                                      | Optimisation possible pour améliorer la désinfection                           | Besoins d'une plus grande surface que les autres procédés à haut débit            |  |
|                                                                      | Sédimentation primaire inutile                                                 | Coût et complexité moindre que les autres procédés à haut débit                   |  |
|                                                                      |                                                                                | Traiter les boues pour inactiver les pathogènes                                   |  |
| Coagulation, floculation et sédimentation                            | Meilleure efficacité d'élimination/inactivation des virus et autres pathogènes | Augmentation de la production de boues                                            |  |
|                                                                      | Faible coût additionnel                                                        | Traiter les boues pour inactiver les autres pathogènes                            |  |
| Filtration sur sable granulaire à haut ou bas débit                  | Amélioration de l'élimination des pathogènes                                   | Traiter les boues pour inactiver les pathogènes                                   |  |
|                                                                      | Technologie maitrisée                                                          | Gestion attentive pour optimiser les performances                                 |  |
|                                                                      | Faible coût additionnel                                                        | Les filtres à bas débits ont besoin de plus de surface                            |  |
| Filtration sur lit double                                            | Si après un traitement primaire, élimination des kystes, des oocystes et       |                                                                                   |  |
|                                                                      | des œufs d'helminthes                                                          | Faible efficacité pour éliminer bactéries et virus                                |  |
|                                                                      | Si après un traitement secondaire, élimination efficace des pathogènes         | Gestion attentive pour optimiser les performances                                 |  |
|                                                                      | Technologie bien comprise                                                      | 22                                                                                |  |
|                                                                      | Faible coût additionnel                                                        |                                                                                   |  |


| Avantages et inconvénients des procédés de traitement des eaux usées |                                                     |                                                           |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|--|--|
| Traitement                                                           | Avantages                                           | Inconvénients                                             |  |  |
| Chloration (chlore libre)                                            | Désinfection la moins onéreuse                      | Prétraitement obligatoire                                 |  |  |
|                                                                      | technologie bien comprise                           | Faible efficacité sur les protozoaires et helminthes      |  |  |
|                                                                      | Efficace pour l'inactivation des bactéries et virus | Génération de sous produits de désinfection               |  |  |
|                                                                      |                                                     | Produit chimique dangereux                                |  |  |
|                                                                      | Inactivation efficace des bactéries, des virus et   |                                                           |  |  |
| Ozone                                                                | certains protozoaires                               | Efficacité si la teneur en matières organiques est faible |  |  |
|                                                                      |                                                     | Faible efficacité sur protozoaires et helminthes          |  |  |
|                                                                      |                                                     | Plus coûteux et plus complxe que la chloration            |  |  |
|                                                                      |                                                     | Nécessité de générer l'ozone sur le site                  |  |  |
|                                                                      |                                                     | Sous produits dangereux                                   |  |  |
|                                                                      | inactivation efficace des bacteries, des virus et   | Uniquement efficace sur effluents a faible teneur         |  |  |
| Les ultraviolets                                                     | certains protozoaires                               | matières solides en suspension                            |  |  |
|                                                                      | Faible coût                                         | et présentant une transmittance élevée                    |  |  |
|                                                                      | Abscence d'utilisation et de génération de sous     |                                                           |  |  |
|                                                                      | produits toxiques                                   | Pas d'inactivation des œufs d'helminthes                  |  |  |
|                                                                      |                                                     | Baisse de performances par la présence de matières        |  |  |
|                                                                      |                                                     | particulaires et de biofilms                              |  |  |
|                                                                      |                                                     | Besoin d'entretenir les lampes                            |  |  |

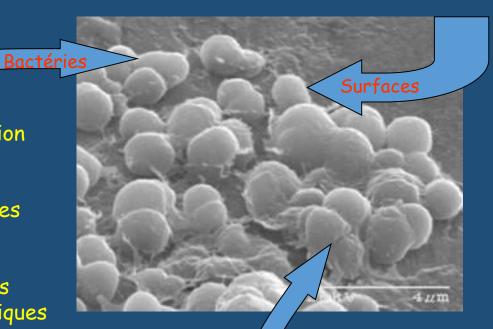
- Indicateurs d'efficacité de traitement : spores de bactéries sulfitoréductrices ou spores de *Clostridium perfringens* et le nombre de germes aérobies revivifiables à 22°C et à 36°C (dans le cas de la distribution d'eau potable).
- Les Clostridium sulfitoréducteurs sont marqueurs d'une pollution fécale ancienne ou intermittente.
- Les pseudomonades tels *P. aeruginosa* et *fluorescence* sont aussi recherchés.


# Biofilms bactériens : Les étapes de formation



# Biofilms bactériens et nettoyage/désinfection




# Biofilms bactériens: Mécanismes de résistance



# Biofilms bactériens : Les cibles et stratégies de prévention

Bactéries en suspension : Limiter et éviter les aérosols, UV 254nm, Ozone, Filtres, climatisation, surpression, rideaux d'air...

- \* Rugosité, viscoélasticité, caractère hydrophile /hydrophobe, donneur/accepteur d'électrons, tensioactifs
- \* Limiter l'usage de l'eau le plus possible, éviter l'abrasion des surfaces, la formation de crevasses, de rainures, d'anfractuosités, limiter les recoins, les zones d'accès difficiles
- \* Revêtements de surface bactériolytique, bactériostatiques, inhibiteurs du QS...



Biofilms positifs

\* Cycles nettoyage/désinfection rapprochés

\* Traitements biologiques/chimiques: biocides et/ou antibiotiques adaptés

\* Traitements physiques

- \* Champs électriques
- \* Cocktails enzymatiques
- \* Lumière pulsée
- \* Plasma froid
- \* Couplage traitement biologique et physique

# Il est possible d'éviter cela!



# **Vannes**

22 au 24 mars 2017

secourssante2017@pompiers.fr







